
Introduction to Julia Programming Language

Francesco Chiocchio

April 2023

1 / 18



Outline

⇒ Aim for today: tools to go from Matlab to Julia

▶ Introduction to Julia - 30 minutes

▶ Examples of codes - 30 minutes
▶ Key concepts:

▶ Types - More important than in matlab for efficient code
▶ Scope of variables - local vs global
▶ Be careful of copying arrays!
▶ Functions - use them, parameters as argument

2 / 18



Introduction I

▶ What is Julia?
▶ Programming language
▶ High level - Uses words
▶ Dynamic - Variable types are assigned and checked at runtime,

no need to declare variable

▶ Why should we learn Julia?
▶ Faster than Matlab, Python or R
▶ Much easier to learn and use than Fortran or C

▶ We spend majority of time coding, not running codes

▶ Open source

3 / 18



Speed Comparison Across Languages

▶ Taken from here

4 / 18

https://julialang.org/benchmarks/


Introduction II

▶ How can Julia achieve this speed?
▶ Language: designed for Just In Time compilation
▶ Multiple Dispatch - Central for Julia
▶ Outside of scope of this lecture. Refer to this video for a long

introduction

▶ How to learn?
▶ Julia Documentation
▶ QuantEcon
▶ Youtube Channel
▶ Cheat Sheet
▶ Practice, google, forums, patience and exercises

5 / 18

https://www.youtube.com/watch?v=3bzBoIyWUq0
https://docs.julialang.org/en/v1/
https://quantecon.org
https://www.youtube.com/watch?v=8h8rQyEpiZA&t=2313s
https://cheatsheets.quantecon.org/


Programming Environments vs Languages

▶ Matlab is an Integrated Development Environment
▶ Text editor
▶ Debugging support
▶ Memory/workspace introspection ...

▶ Julia is a programming language
▶ REPL - Read Evaluate Print Loop
▶ Text editors - Write the code, save it, run it separately - VIM
▶ IDE - Text editing combined with running the code - VScode
▶ Notebooks - Pluto.jl - check Joel’s GitHub

▶ I will use VScode. More info here
▶ Closer to an IDE
▶ Example 1: Open REPL, Open VScode, Save file

6 / 18

https://github.com/jmarbet/julia-shortcourse
https://www.julia-vscode.org/docs/stable/


Key characteristics of Julia

▶ Packages and import

▶ Variable and Types

▶ Functions

▶ Debugging

▶ Macros

7 / 18



Packages
▶ Extend the functionality of Julia

▶ You will need to use many of them!

▶ Read and understand what they do by going on their
documentation and on github

▶ Install them using the Package manager

▶ Activate them in your program with using

▶ Specific commands with import

▶ Make sure that they are up to date!

▶ Download the QuantEcon Package!

⇒ Example 1

Unlike Matlab, without packages you will not do a great deal in
Julia! Learn to find, understand and use them. More packages do
the same thing (think of plot) take your time in understanding
which one fits better your code

8 / 18



Variables and Types: Basic

▶ You create variables:
▶ Store information
▶ Manipulate them
▶ Compare them

▶ Variables can be of Type Boolean, Integer, Float, String, ...

▶ Dynamic language: No need to declare them! Infers them

▶ Check the type of a variable using the typeof() function

▶ Try to make your code Type stable

⇒ Example 2 Part 1

Variable creation not very different from Matlab. Understanding
types is important to understand errors, the Julia lexicon, and
write good codes.

9 / 18



Variables and Types: Arrays

▶ Most common method of storing information
▶ They can have any dimension:

▶ Arrays with 1 dimension can be interpreted as column vectors
▶ Matrix is just a an array with more dimensions

⇒ Example 2 Part 2

▶ Array indexing similar to Matlab

▶ Be careful of column or row vector

▶ You need to use the funcion copy to create a new array that
is equal to an old array!

▶ Note the difference between slices and view: The latter does
not create more allocations

10 / 18



Variables and Types: Tuples

▶ Types of containers: contain collection of date
▶ Use these to input the parameters and use as argument in all

functions
▶ Enable you to not use global variables - We will talk about this

more later on!

▶ Use the Parameters package to unpack tuples efficiently and
give them defaults values!

⇒ Example 2 Part 3

11 / 18



Functions: General

▶ Functions are a key aspect of Julia! You will use and create
many of them
▶ Easy to change/debug
▶ Code is clearer
▶ Can make your code a lot faster

▶ Functions can be arguments of other functions

▶ Functions can be one liners or anonymous

▶ Variable created in functions will not exist outside of them -
Global versus local scope

⇒ Example 3 part 1 shows how to create functions and some
example, but there is a lot more!

▶ Understand how to name, define, put the arguments of
functions. And how to return the values

12 / 18



Functions: Broadcasting and Comprehensions

▶ Broadcasting: Apply a function or an operator to each
element!
▶ More than just elementwise operation
▶ It applies to user-defined functions as well
▶ A convenience macro for adding broadcasting on every

function call is @.

▶ Comprehension are basically loops in brackets
▶ Convenient way of creating variable

⇒ Example 3 part 2

▶ Not very different from Matlab, just understand the
vocabulary!

▶ They should be as fast as loops! But you can create a code to
check for yourself.

13 / 18



Functions: Multiple-Dispatch and notes

▶ Conventions:
▶ Name function with small letters
▶ Write all your intermediate steps in functions
▶ All functions for your project saved in a different file and

include them in the main file with include
▶ Functions which modify any of the arguments have the name

ending with ! (in-place functions)

▶ Multiple-Dispatch:
▶ Functions have different behavior depending on the type of the

arguments - different methods
▶ Will not affect your life, but interesting to see
▶ Declaring types of your arguments is usually not important and

no speed gain!

▶ main() function that encapsulates all your code
▶ Making everything in local scope!
▶ Next and most important topic!

⇒ Example 3 part 3

14 / 18



Scope of variables

▶ Region of code within which a variable is visible
▶ Variable scoping helps avoid variable naming conflicts

▶ Local Variables
▶ Variables defined inside a function, for, while, let,

comprehensions, broadcast are local
▶ Local variables only exist in the program where they are defined
▶ Variables that are not global or are not function arguments are

undefined inside a function

▶ Global Variables
▶ Never erased, but they can be overwritten
▶ Slow and more difficult to track down bugs

⇒ Example 4 to understand the importance of scope!

15 / 18



Debugging

▶ Use debug tool, display intermediate steps, short loops, check
output of every function (also in global scope!)

▶ Learn to read the error message!
▶ Where is the problem? Is there a problem with the argument?

Are there cases that I am not considering? Did I forget to do a
check on the input variables? Use different inputs as checks
(for instance 0, 1, -1, Inf, nothing, missing,...maybe you forgot
to check!)

▶ Do a lot of testing, use macros (@, next slides!)

▶ Check documentation of the function, check online and ask
questions!
▶ Stack overflow, Julia discourse
▶ Search by using error message, and correct vocabulary! i.e.

Tuple, Array, Method

⇒ Example 5 to see how I wasted my weekend!

16 / 18



Macros

▶ Just a way to automatically write code that you could have
written out by hand anyway. They come before the code with
a @ (as we have seen!)

▶ Some macros are useful to debug, increase speed, show
results, test (list here, google them!)
▶ show, eval, views, assert
▶ with kw, unpack
▶ time, btime, benchmark, allocate
▶ methods(not a macro), which
▶ code warntype, edit, code lowered

17 / 18



Programming

▶ In general:
▶ Think before programming: pen and paper, whiteboard, small

codes
▶ Clean code: write functions, do not repeat operations, short

comments, clear variable names, proper indentation

▶ For Julia:
▶ Careful with the use of global and constants: use tuples for

parameters
▶ Careful with type stability
▶ Efficiency: Read the Julia Performance Tips here
▶ Use profiling tools: here (I have never done it)
▶ Display only relevant information

⇒ You are not programmers, you are economists. Invest
more time in economics than in programming!

18 / 18

https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/manual/profile/##Profiling

